# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "bmm" in publications use:' type: software license: GPL-2.0-only title: 'bmm: Easy and Accessible Bayesian Measurement Models Using ''brms''' version: 1.0.0 doi: 10.31234/osf.io/umt57 identifiers: - type: doi value: 10.32614/CRAN.package.bmm abstract: Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into 'brms' syntax, a powerful and flexible framework for fitting Bayesian regression models using 'Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. authors: - family-names: Popov given-names: Vencislav email: vencislav.popov@gmail.com orcid: https://orcid.org/0000-0002-8073-4199 - family-names: Frischkorn given-names: Gidon T. email: gidon.frischkorn@psychologie.uzh.ch orcid: https://orcid.org/0000-0002-5055-9764 preferred-citation: type: article title: 'A tutorial for estimating mixture models for visual working memory tasks in brms: Introducing the Bayesian Measurement Modeling (bmm) package for R' authors: - family-names: Frischkorn given-names: Gidon T. email: gidon.frischkorn@psychologie.uzh.ch orcid: https://orcid.org/0000-0002-5055-9764 - family-names: Popov given-names: Vencislav email: vencislav.popov@gmail.com orcid: https://orcid.org/0000-0002-8073-4199 journal: PsyArXiv year: '2023' doi: 10.31234/osf.io/umt57 repository: https://popov-lab.r-universe.dev repository-code: https://github.com/venpopov/bmm commit: 8ada976031db6f46deea8e1f52e68046e8aae8a6 url: https://venpopov.github.io/bmm/ contact: - family-names: Popov given-names: Vencislav email: vencislav.popov@gmail.com orcid: https://orcid.org/0000-0002-8073-4199