
Package: chkptstanr (via r-universe)
October 25, 2024

Title Checkpoint MCMC Sampling with 'Stan'
Version 0.2.0
Description Fit Bayesian models in Stan <doi:10.18637/jss.v076.i01>

with checkpointing, that is, the ability to stop the MCMC
sampler at will, and then pick right back up where the MCMC
sampler left off. Custom 'Stan' models can be fitted, or the
popular package 'brms' <doi:10.18637/jss.v080.i01> can be used
to generate the 'Stan' code. This package is fully compatible
with the R packages 'brms', 'posterior', 'cmdstanr', and
'bayesplot'.

License Apache License 2.0 | file LICENSE
Depends R (>= 4.1.0)
Imports brms (>= 2.16.1), abind, methods, rstan, Rdpack, fs, waldo,

glue, stringr
Suggests cmdstanr, rmarkdown, knitr, posterior, here, testthat (>=

3.0.0), withr, ape
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1

Additional_repositories https://mc-stan.org/r-packages/

RdMacros Rdpack
VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true

URL https://github.com/venpopov/chkptstanr,
https://venpopov.github.io/chkptstanr/

BugReports https://github.com/venpopov/chkptstanr/issues

Repository https://popov-lab.r-universe.dev
RemoteUrl https://github.com/venpopov/chkptstanr
RemoteRef v0.2.0
RemoteSha 94eea9a665608323c9ee080914cdf06be3502766

1

https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v080.i01
https://mc-stan.org/r-packages/
https://github.com/venpopov/chkptstanr
https://venpopov.github.io/chkptstanr/
https://github.com/venpopov/chkptstanr/issues

2 chkpt_brms

Contents

chkpt_brms . 2
chkpt_setup . 5
chkpt_stan . 6
combine_chkpt_draws . 9
create_folder . 11
extract_chkpt_draws . 12
extract_hmc_info . 13
extract_stan_state . 14
make_brmsfit . 15
print.chkpt_brms . 15
print.chkpt_setup . 16
reset_checkpoints . 17

Index 18

chkpt_brms Checkpoint Sampling: brms

Description

Fit Bayesian generalized (non-)linear multivariate multilevel models using brms with checkpoint-
ing.

Usage

chkpt_brms(
formula,
data,
iter_adaptation = 150,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 100,
parallel_chains = 4,
threads_per = 1,
chkpt_progress = TRUE,
control = NULL,
seed = 1,
stop_after = NULL,
reset = FALSE,
path,
...

)

chkpt_brms 3

Arguments

formula An object of class formula, brmsformula, or brms{mvbrmsformula}. Further
information can be found in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

iter_adaptation

(positive integer) The number of iterations in the initial warmup, which are used
for the adaptation of the step size and inverse mass matrix. This is equivalent to
the traditional warmup stage. Checkpointing will begin only after this stage is
complete.

iter_warmup (positive integer) The number of warmup iterations to run per chain after the
adaptation stage (defaults to 1000). During this stage the step size and inverse
mass matrix are fixed to the values found during the adaptation stage. There is
no further adaptation performed.

iter_sampling (positive integer) The number of post-warmup iterations to run per chain (de-
faults to 1000).

iter_per_chkpt (positive integer). The number of iterations per checkpoint. Note that iter_sampling
is divided by iter_per_chkpt to determine the number of checkpoints. This
must result in an integer (if not, there will be an error).

parallel_chains

(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
mc.cores, which can be set for an entire R session by options(mc.cores=value).
If the mc.cores option has not been set then the default is 1.

threads_per (positive integer) Number of threads to use in within-chain parallelization (de-
faults to 1).

chkpt_progress logical. Should the chkptstanr progress be printed (defaults to TRUE) ? If set
to FALSE, the standard cmdstanr progress bar is printed for each checkpoint
(which does not actually keep track of checkpointing progress)

control A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. For a comprehensive overview see
stan.

seed (positive integer). The seed for random number generation to make results re-
producible.

stop_after (positive integer). The number of iterations to sample before stopping. If NULL,
then all iterations are sampled (defaults to NULL). Note that sampling will stop
at the end of the first checkpoint which has an iteration number greater than or
equal to stop_after.

reset logical. Should the checkpointing be reset? If TRUE, then the model will be-
gin sampling from the beginning (defaults to FALSE). WARNING: This will re-
move all previous checkpointing information (see reset_checkpoints()). If
the model is unchanged and previously compiled, sampling will begin without
recompiling the model.

4 chkpt_brms

path Character string. The path to the folder, that is used for saving the checkpoints
(see Details). You can provide either a relative path to the current working di-
rectory or a full path. You no longer need to create the folder, as this is done
automatically.

... Any additional arguments passed to brm, including, but not limited to, user-
defined prior distributions, the brmsfamily (e.g., family = poisson()), data2,
custom_families, etc.

Value

An object of class brmsfit

Note

A folder specified by path is created with four subfolders:

• cmd_output: The cmdstanr output_files (one for each checkpoint and chain).

• cp_info: Mass matrix, step size, and initial values for next checkpoint (last iteration from
previous checkpoint).

• cp_samples: Samples from the posterior distribution (post warmup)

• stan_model: Complied Stan model

Examples

Not run:
library(brms)
library(cmdstanr)

"random" intercept
fit1 <- chkpt_brms(

bf(
formula = count ~ zAge + zBase * Trt + (1 | patient),
family = poisson()

),
data = epilepsy, ,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = "chkpt_folder_fit1"

)

brmsfit output
fit1

remove "random" intercept (for model comparison)
fit2 <- chkpt_brms(

bf(
formula = count ~ zAge + zBase * Trt,

chkpt_setup 5

family = poisson()
),
data = epilepsy, ,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = "chkpt_folder_fit2"

)

brmsfit output
fit2

compare models
loo(fit1, fit2)

priors
bprior <- prior(constant(1), class = "b") +

prior(constant(2), class = "b", coef = "zBase") +
prior(constant(0.5), class = "sd")

fit model
fit3 <-

chkpt_brms(
bf(

formula = count ~ zAge + zBase + (1 | patient),
family = poisson()

),
data = epilepsy,
path = "chkpt_folder_fit3",
prior = bprior,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,

)

check priors
prior_summary(fit3)

End(Not run)

chkpt_setup Checkpoint Setup

Description

Deterimine the number of checkpoints for the warmup and sampling, given the desired number of
iterations for each and the iterations per checkpoint.

6 chkpt_stan

Usage

chkpt_setup(iter_sampling, iter_warmup, iter_per_chkpt)

Arguments

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_per_chkpt (positive integer) The number of iterations per check point.

Value

A list with the following:

• warmup_chkpts: Number of warmup checkpoints

• sample_chkpts: Number of sampling checkpoints

• total_chkpts: Total number of checkpoints (warmup_chkpts + sample_chkpts)

• iter_per_chkpt: Iterations per checkpoint

Examples

chkpt_setup <- chkpt_setup(
iter_sampling = 5000,
iter_warmup = 2000,
iter_per_chkpt = 10

)

chkpt_setup

chkpt_stan Checkpoint Sampling: Stan

Description

Fit Bayesian models using Stan with checkpointing.

Usage

chkpt_stan(
model_code,
data,
iter_adaptation = 150,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 100,

chkpt_stan 7

parallel_chains = 4,
threads_per = 1,
chkpt_progress = TRUE,
control = NULL,
seed = 1,
stop_after = NULL,
reset = FALSE,
path,
...

)

Arguments

model_code Character string corresponding to the Stan model.
data A named list of R objects (like for RStan). Further details can be found in

sample.
iter_adaptation

(positive integer) The number of iterations in the initial warmup, which are used
for the adaptation of the step size and inverse mass matrix. This is equivalent to
the traditional warmup stage. Checkpointing will begin only after this stage is
complete.

iter_warmup (positive integer) The number of warmup iterations to run per chain (defaults to
1000).

iter_sampling (positive integer) The number of post-warmup iterations to run per chain (de-
faults to 1000).

iter_per_chkpt (positive integer). The number of iterations per checkpoint. Note that iter_sampling
is divided by iter_per_chkpt to determine the number of checkpoints. This
must result in an integer (if not, there will be an error).

parallel_chains

(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
mc.cores, which can be set for an entire R session by options(mc.cores=value).
If the mc.cores option has not been set then the default is 1.

threads_per (positive integer) Number of threads to use in within-chain parallelization (de-
faults to 1).

chkpt_progress logical. Should the chkptstanr progress be printed (defaults to TRUE) ? If set
to FALSE, the standard cmdstanr progress bar is printed for each checkpoint
(which does not actually keep track of checkpointing progress)

control A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. For a comprehensive overview see
stan.

seed (positive integer). The seed for random number generation to make results re-
producible.

stop_after (positive integer). The number of iterations to sample before stopping. If NULL,
then all iterations are sampled (defaults to NULL). Note that sampling will stop
at the end of the first checkpoint which has an iteration number greater than or
equal to stop_after.

8 chkpt_stan

reset logical. Should the checkpointing be reset? If TRUE, then the model will be-
gin sampling from the beginning (defaults to FALSE). WARNING: This will re-
move all previous checkpointing information (see reset_checkpoints()). If
the model is unchanged and previously compiled, sampling will begin without
recompiling the model.

path Character string. The path to the folder, that is used for saving the checkpoints
(see Details). You can provide either a relative path to the current working di-
rectory or a full path. You no longer need to create the folder, as this is done
automatically.

... Currently ignored.

Value

An objet of class chkpt_stan

Examples

Not run:

stan_code <- make_stancode(
bf(
formula = count ~ zAge + zBase * Trt + (1 | patient),
family = poisson()

),
data = epilepsy

)
stan_data <- make_standata(

bf(
formula = count ~ zAge + zBase * Trt + (1 | patient),
family = poisson()

),
data = epilepsy

)

"random" intercept
fit1 <- chkpt_stan(

model_code = stan_code,
data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = "chkpt_folder_fit1"

)

draws <- combine_chkpt_draws(object = fit1)

posterior::summarise_draws(draws)

eight schools example

combine_chkpt_draws 9

stan_code <- "
data {
int<lower=0> n;
real y[n];
real<lower=0> sigma[n];

}
parameters {

real mu;
real<lower=0> tau;
vector[n] eta;

}
transformed parameters {

vector[n] theta;
theta = mu + tau * eta;

}
model {

target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);

}
"
stan_data <- schools.data <- list(

n = 8,
y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18)

)

fit2 <- chkpt_stan(
model_code = stan_code,
data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = "chkpt_folder_fit2"

)

draws <- combine_chkpt_draws(object = fit2)

posterior::summarise_draws(draws)

End(Not run)

combine_chkpt_draws Combine Checkpoint Draws

Description

Combine Checkpoint Draws

Usage

combine_chkpt_draws(object, ...)

10 combine_chkpt_draws

Arguments

object An object of class brmsfit or chkpt_stan.

... Currently ignored.

Value

An object of class draws_array.

Examples

Not run:
path <- create_folder(folder_name = "chkpt_folder_fit1")

stan_code <- "
data {
int<lower=0> n;
real y[n];
real<lower=0> sigma[n];

}
parameters {

real mu;
real<lower=0> tau;
vector[n] eta;

}
transformed parameters {

vector[n] theta;
theta = mu + tau * eta;

}
model {

target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);

}
"

stan_data <- schools.data <- list(
n = 8,
y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18)

)

fit2 <- chkpt_stan(model_code = stan_code,
data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

draws <- combine_chkpt_draws(object = fit2)

draws

End(Not run)

create_folder 11

create_folder Create Folder for Checkpointing (Deprecated)

Description

create_folder() is deprected. Provide a path directly in chkpt_brms()’, or chkpt_stan() instead and a
folder will be created automatically.’

Usage

create_folder(folder_name = "cp_folder", path = NULL)

Arguments

folder_name Character string. Desired name for the ’parent’ folder (defaults to cp_folder).

path Character string, when specified. Defaults to NULL, which then makes the folder
in the working directory.

Value

the path to the main parent folder containing the four subfolders. This path should be used as
the path argument in chkpt_brms. If return_relative = TRUE, the relative path to the current
working directory is returned. If path is specified or return_relative = FALSE, the full path is
returned.

——————-

Create the folder for checkingpointing, which will ’house’ additional folders for the .stan model,
checkpointing information, and draws from the posterior distribution.

Note

This creates a directory with four folders:

• cmd_output: The cmdstanr output_files (one for each checkpoint and chain).

• cp_info: Mass matrix, step size, and initial values for next checkpoint (last iteration from
previous checkpoint).

• cp_samples: Samples from the posterior distribution (post warmup)

• stan_model: Complied Stan model

12 extract_chkpt_draws

Examples

create initial folder
path <- create_folder(folder_name = 'cp_folder')
path
unlink('cp_folder', recursive = TRUE) # remove folder

remove folder
unlink('cp_folder', recursive = TRUE)
identical(dir(path), character(0))

repeat - no warning
path <- create_folder(folder_name = 'cp_folder')

repeat - warning, but folders are kept
path <- create_folder(folder_name = 'cp_folder')
identical(dir(path), c('cmd_output', 'cp_info', 'cp_samples', 'stan_model'))

unlink('cp_folder', recursive = TRUE)

specify nested folder
path <- create_folder(folder_name = 'nested_folder/cp_folder')
path
unlink('nested_folder', recursive = TRUE) # remove folder

extract_chkpt_draws Extract Draws from CmdStanMCMC Objects

Description

A convenience function for extracting the draws from a CmdStanMCMC object.

Usage

extract_chkpt_draws(object, phase)

Arguments

object An object of class CmdStanMCMC.
phase Character string. Which phase during checkpointing? The options included

warmup and sample. The latter extracts the draws with inc_warmup = FALSE,
which is the default in draws

Value

A 3-D draws_array object (iteration x chain x variable).

Note

This can be used to extract the draws in general by setting phase = "sample" which then only
includes the post-warmup draws.

extract_hmc_info 13

Examples

Not run:
library(cmdstanr)

eight schools example
fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

drws <- extract_chkpt_draws(object = fit_schools_ncp_mcmc,
phase = "sample")

compare to cmdstanr
all.equal(drws, fit_schools_ncp_mcmc$draws())

End(Not run)

extract_hmc_info Extract HMC Sampler Information

Description

Extract the inverse metric and step size adaption from CmdStanMCMC objects.

Usage

extract_hmc_info(object)

Arguments

object An object of class CmdStanMCMC

Value

A list including

• inv_metric: Inverse metric for each chain (with matrix = FALSE).

• step_size_adapt: Step size adaptation for each chain.

Note

This is primarily used internally.

Examples

Not run:

library(cmdstanr)

fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

14 extract_stan_state

extract_hmc_info(fit_schools_ncp_mcmc)

End(Not run)

extract_stan_state Extract Stan State

Description

Extract Stan State

Usage

extract_stan_state(object, phase)

Arguments

object An object of class cmdstanr

phase Character string indicating the current phase. Options include wormup and sample/

Value

A list containing the inverse metric, step size, and last MCMC draw (to be used as the initial value
for the next checkpoint)

Examples

Not run:
library(cmdstanr)

eight schools example
fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

extract_stan_state(fit_schools_ncp_mcmc, "sample")

End(Not run)

make_brmsfit 15

make_brmsfit Make brmsfit Object

Description

This is primarily used internally, wherein the output files of multiple cmdstanr fits are combined
into a single brmsfit object. object is converted into a brmsfit object.

Usage

make_brmsfit(formula, data, path, ...)

Arguments

formula A brms formula used to generate the checkpoints

data A data frame used to generate the checkpoints

path Character string. The path to the folder, that is used for saving the checkpoints.

... Additional arguments to be passed to brm.

Value

An object of class brmsfit

Note

This is primarily an internal function that constructs a brmsfit object.

print.chkpt_brms Print chkpt_brms Objects

Description

Print chkpt_brms Objects

Usage

S3 method for class 'chkpt_brms'
print(x, ...)

Arguments

x Object of class chkpt_brms

... Currently ignored

16 print.chkpt_setup

Value

No return value, and used to print the chkpt_brms object.

Note

This function mainly avoids printing out a list, and it is only used when brmsfit = "FALSE" in
chkpt_brms.

Typically, after fitting, the posterior draws should be summarized with combine_chkpt_draws (as-
suming brmsfit = "FALSE").

print.chkpt_setup Print chkpt_setup Object

Description

Print chkpt_setup Object

Usage

S3 method for class 'chkpt_setup'
print(x, ...)

Arguments

x An object of class chkpt_setup.

... Currently ignored.

Value

No return value, and used to print the chkpt_setup object.

Examples

chkpt_setup <- chkpt_setup(
iter_sampling = 5000,
iter_warmup = 2000,
iter_per_chkpt = 10

)

chkpt_setup

reset_checkpoints 17

reset_checkpoints Delete Checkpoint Folders containing samples, keep the model

Description

Deletes all checkpoint files and folders under path except for stan_model/model.stan and stan_model/model.exe.
This allows you to restart the sampling from 0 without recompiling the model.

Usage

reset_checkpoints(path, reset = TRUE, recompile = FALSE)

Arguments

path (character) The path to the checkpoint folder.

reset (logical) If TRUE, only the checkpoint folders are deleted

recompile (logical) If TRUE, the entire folder is deleted allowing for a fresh start. If both
reset and recompile are FALSE, nothing is done.

Index

brm, 4
brms, 3
brmsfamily, 4
brmsformula, 3

chkpt_brms, 2, 11, 16
chkpt_setup, 5
chkpt_stan, 6
combine_chkpt_draws, 9, 16
create_folder, 11

draws, 12

extract_chkpt_draws, 12
extract_hmc_info, 13
extract_stan_state, 14

formula, 3

make_brmsfit, 15

print.chkpt_brms, 15
print.chkpt_setup, 16

reset_checkpoints, 17
reset_checkpoints(), 3, 8

sample, 7
stan, 3, 7

18

	chkpt_brms
	chkpt_setup
	chkpt_stan
	combine_chkpt_draws
	create_folder
	extract_chkpt_draws
	extract_hmc_info
	extract_stan_state
	make_brmsfit
	print.chkpt_brms
	print.chkpt_setup
	reset_checkpoints
	Index

